A red flag for AI translation

From: POLITICO's Digital Future Daily - Thursday Jan 25,2024 09:32 pm
Presented by the Information Technology Industry Council (ITI): How the next wave of technology is upending the global economy and its power structures
Jan 25, 2024 View in browser
 
POLITICO's Digital Future Daily newsletter logo

By Derek Robertson

Presented by

Information Technology Industry Council (ITI)

A photo taken on March 31, 2023 in Manta, near Turin, shows a computer screen with the home page of the artificial intelligence OpenAI web site, displaying its chatGPT robot. Italy's privacy watchdog said on March it had blocked the controversial robot ChatGPT, saying the artificial intelligence app did not respect user data and could not verify users' age. (Photo by Marco BERTORELLO / AFP)

The OpenAI homepage. | AFP via Getty Images

“Hallucinations” aside, today’s sophisticated chatbots can sometimes seem like magic — passing standardized tests with flying colors, or conjuring up multilingual poetry in the blink of an eye.

Well… depending on what language you speak. A recent paper awaiting peer review from a group of researchers at Amazon and the University of California, Santa Barbara found that chatbots’ linguistic skills might be threatened by ghosts from a past era of AI, raising significant questions about their ability to communicate effectively in lesser-used languages on the web (think regional dialects from Africa or Oceania). Analyzing a database of billions of sentences, they found that a huge chunk of the digital text likely to be hoovered into LLMs from those languages wasn't written by native speakers but instead was crudely machine-translated by older AIs.

That means today’s cutting-edge multilingual models are training on very low-quality data, leading to lower-quality output in some languages, more hallucination, and potentially amplifying the web’s already-existing shortcomings and biases.

That’s obviously bad in its own right, but it raises a larger question about the future of generative AI: Is it doomed, as some have predicted, by the “garbage in, garbage out” principle?

I spoke today with Ethan Mollick, an AI researcher and professor at the University of Pennsylvania’s Wharton School, and asked him what he thought about the findings given his work on how people actually interact with AI models in a professional or classroom setting. He was skeptical that messy, photocopy-of-a-photocopy results like those the Amazon and UC Santa Barbara researchers found could lead to the “model collapse” that some researchers fear, but said he could see a need for AI companies to tackle language issues head-on.

“There are worlds where this is a big problem, and data quality and data quantity both matter,” Mollick said. “The real question is whether there’s going to be a deliberate effort, like I think Google has done with Bard, to try and train these models for other languages.”

Usually, large language models are trained with extra weight given to heavily-edited, high-quality sources like Wikipedia or officially published books and news media. In the case of lesser-used languages there’s simply less native, high-quality content in that vein on the web. The researchers found that AI models then disproportionately train on machine-translated articles they describe as “low quality,” about “topics like being taken more seriously at work, being careful about your choices, six tips for new boat owners, deciding to be happy, etc.”.

All it takes to determine what the “garbage in” to an AI model might be, then, is a quick web search. The “garbage out” is, of course, apparent from one’s interaction with the model, but exactly how it got made is less clear — and researchers like Mollick say the very size and sophistication of current AI models means that remains opaque to researchers for the moment.

“Even with open-source models, we just fundamentally don’t know” how, or why, certain AI models operate better or worse in any given language, Mollick said. “There are dueling papers about how much the quality versus quantity of data matters and how you train better in foreign languages.”

So, for those keeping score: Old, low-quality machine-translated foreign-language content does predominate in more obscure languages, reducing AI models’ fluency with them. But we don’t know exactly how this happens within any given AI model, and we also still don’t know exactly the extent to which AI development is threatened by training on AI-generated content.

Mehak Dhaliwal, a former AWS intern and current PhD student at UC Santa Barbara, told Vice’s Motherboard that the team initiated the study because they saw the lack of quality firsthand.

“We actually got interested in this topic because several colleagues who work in MT [machine translation] and are native speakers of low-resource languages noted that much of the internet in their native language appeared to be MT generated,” he said.

So what can actually be done about it? Brian Thompson, a senior scientist at Amazon AWS AI who is one of the paper’s authors and its listed contact, told DFD via email that he couldn’t comment. But he pointed to the conclusion of his fellow researchers that model trainers could use tools to identify and eliminate machine-translated content before it gums the model’s works up.

Both researchers and the data analysts fine-tuning these models are able to flag and classify data at an almost psychedelically minute level, meaning it should be no problem to at least attempt a prophylactic against bad translated content. Still, with the most sophisticated AI models like GPT-4 rumored to have roughly 1.8 trillion parameters, those scientists could have their work cut out for them.

 

A message from the Information Technology Industry Council (ITI):

Connect with the industry leaders and policymakers who are shaping AI. Reserve your seat for The Intersect 2024: A Tech + Policy Summit, happening Feb. 7 in Washington, D.C.

 
franco files

Germany and France are pushing the European Union’s AI Act negotiations to their limit.

POLITICO’s Gian Volpicelli, Océane Herrero, and Hans von der Burchard reported on the back-and-forth for Pro s today, as the two bloc heavyweights are pushing for more business-friendly strictures in the law ahead of a vote on its final text scheduled for Feb. 2.

“There is no final text,” a representative for the cabinet of French Economy Minister Bruno Le Maire told POLITICO Wednesday. “The regulation is still being negotiated, and that will result in another round of three-way negotiations.”

A particular sticking point is copyright, where France says the AI Act’s planned requirement that companies disclose the copyrighted material used in training AI would be an impediment to AI startups. Still, one diplomat familiar with the negotiations told POLITICO the law’s text is unlikely to be changed or blocked by force, saying France, Germany, and Italy are “isolated” in their preference for less stringent regulation.

 

A message from the Information Technology Industry Council (ITI):

Advertisement Image

 
good chatbot, good

Take a deep breath: The RAND Corporation says we don’t have to worry just yet about chatbots unleashing biological weapons.

In a report published this morning, RAND researchers say that “biological weapon attack planning currently lies beyond the capability frontier of LLMs as assistive tools” and that “LLMs do not substantially increase the risks associated with biological weapon attack planning.”

They ran a traditional controlled experiment, where one group of security experts planned an imaginary biological attack with LLMs and one planned an attack without them. The chatbots were of negligible help to the researchers.

Still, they say there might be room for, uh, “improvement” on that front: “It remains uncertain whether these risks lie ‘just beyond’ the frontier and, thus, whether upcoming LLM iterations will push the capability frontier far enough to encompass tasks as complex as biological weapon attack planning, or whether the task of planning a biological weapon attack is so complex and multifaceted as to always remain outside the frontier of LLMs,” they write in the conclusion.

The RAND researchers recommend scaling up various “red-teaming” exercises meant to detect malevolent AI activity before its use in the wild, and bolstering the research community around negative AI capabilities.

 

YOUR GUIDE TO EMPIRE STATE POLITICS: From the newsroom that doesn’t sleep, POLITICO's New York Playbook is the ultimate guide for power players navigating the intricate landscape of Empire State politics. Stay ahead of the curve with the latest and most important stories from Albany, New York City and around the state, with in-depth, original reporting to stay ahead of policy trends and political developments. Subscribe now to keep up with the daily hustle and bustle of NY politics. 

 
 
Tweet of the Day

Hey, whatever happened to cybernetics?

THE FUTURE IN 5 LINKS

Stay in touch with the whole team: Ben Schreckinger (bschreckinger@politico.com); Derek Robertson (drobertson@politico.com); Mohar Chatterjee (mchatterjee@politico.com); Steve Heuser (sheuser@politico.com); Nate Robson (nrobson@politico.com); Daniella Cheslow (dcheslow@politico.com); and Christine Mui (cmui@politico.com).

If you’ve had this newsletter forwarded to you, you can sign up and read our mission statement at the links provided.

 

A message from the Information Technology Industry Council (ITI):

What’s next for AI? How are geopolitics shaping tech policy? Find out at The Intersect: A Tech + Policy Summit, happening in Washington, D.C. on February 7. Reserve your seat today.

 
 

JOIN 1/31 FOR A TALK ON THE RACE TO SOLVE ALZHEIMER’S: Breakthrough drugs and treatments are giving new hope for slowing neurodegenerative diseases like Alzheimer’s disease and ALS. But if that progress slows, the societal and economic cost to the U.S. could be high. Join POLITICO, alongside lawmakers, official and experts, on Jan. 31 to discuss a path forward for better collaboration among health systems, industry and government. REGISTER HERE.

 
 
 

Follow us on Twitter

Ben Schreckinger @SchreckReports

Derek Robertson @afternoondelete

Steve Heuser @sfheuser

 

Follow us

Follow us on Facebook Follow us on Twitter Follow us on Instagram Listen on Apple Podcast
 

To change your alert settings, please log in at https://www.politico.com/_login?base=https%3A%2F%2Fwww.politico.com/settings

This email was sent to by: POLITICO, LLC 1000 Wilson Blvd. Arlington, VA, 22209, USA

| Privacy Policy | Terms of Service

More emails from POLITICO's Digital Future Daily

Jan 24,2024 09:04 pm - Wednesday

Welcome to AI university

Jan 23,2024 09:24 pm - Tuesday

Poll: AI is looking more partisan

Jan 22,2024 09:26 pm - Monday

Silicon Valley's crush on fusion

Jan 19,2024 09:02 pm - Friday

5 questions for Julius Krein

Jan 18,2024 09:02 pm - Thursday

The looming AI monopolies

Jan 17,2024 09:02 pm - Wednesday

Davos and the global state of quantum

Jan 16,2024 09:50 pm - Tuesday

One step closer to 'Graphene Valley'